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1 Review of last tutorial

In tutorial 2, we review the definition of compactness.

Definition 1.1. A subset S of Rn is called compact if it satisfies any of the
following equivalent conditions.

(i) S is closed and bounded.

(ii) Any sequence (xn) of S has a converging subsequence, i.e. there exists a
subsequence (xnk

) and x ∈ S so that limk xnk
= x.

(iii) Any open cover of S has a finite subcover, i.e, If Uα’s are open, and
S ⊂ ∪αUα, then we can cover S using only finitely many Uα : S ⊂
Uα1
∪ Uα2

∪ · · · ∪ Uαn
.

Remark 1.2. Later in this course when you will learn compactness for more
general spaces, you will find the above condition may no longer be equivalent.
Condition 3 is the most general one.

Next we discuss about the conditions of Lipschitz.

Definition 1.3. Let f : [0, 1] → R be a function, and x ∈ [0, 1]. We have the
following conditions:

(i) We say that f is Lipschitz (continuous) at x if there exist δ > 0 and L > 0
such that

|f(y)− f(x)| ≤ L|y − x|

whenever y ∈ [0, 1] and |y − x| < δ.

(ii) We say that f is locally Lipschitz (continuous) at x if there exist δ > 0
and L > 0 such that

|f(y)− f(z)| ≤ L|y − z|

whenever y, z ∈ [0, 1] and |y − x|, |z − x| < δ.
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(iii) We say that f is uniformly Lipschitz (continuous) on [0, 1] if there exist
δ > 0 and L > 0 such that

|f(y)− f(z)| ≤ L|y − z|

whenever x, y ∈ [0, 1] and |x− y| < δ.

Remark 1.4.

(i) If f is bounded, then the condition |y−x| < δ is not necessary in definition
(i) and (iii)

(ii) In lecture 4, one can find the definition that f satisfies a Lipschitz condition
on [0, 1], this is equivalent to the condition in (iii)+ boundedness of f .

It is clear that

uniform Lipschitz =⇒ locally Lipschitz everywhere =⇒ Lipschitz everywhere

In last tutorial, we show that locally Lipschitze everywhere =⇒ uniform Lipschitz
on compact sets. The proof is similar to the proof that continuous =⇒
uniform continuous on compact sets.
However, the last condition is not equivalent to the previous one, even on com-
pact sets.

Example 1.5. The function

f =

{
0, x = 0

x sin(1/x), x ∈ (0, 1]

is Lipschitz at every point. It is a simple exercise to see f is Lipschitz at x 6= 0
(using derivatives!). To see f is Lipschitz at x = 0, note that |f(y) − f(0)| =
y| sin(1/y)| ≤ |y−0|. It remains to see that f is not uniformly Lipschitz. In fact,
let xn = 1/(nπ+ 1

2π), yn = 1/(nπ− 1
2π), we have |f(xn)−f(yn)|/|xn−yn| = 2n.

Finally, we see that if f is differentiable (on (0, 1)) with bounded derivative,
then f is uniformly Lipschitz. On the other hand, if f is uniformly Lipschitz
and differentiable, then f ′ is bounded. However, the function in Example 1.5
also provides an example of a differentiable function, Lipschitz at every point
of [0, 1], with unbounded derivative.

2 Answers of Last Tutorial’s question

(a) If f is differentiable and f ′ is bounded on [0, 1], then f is uniform Lipschitz
on [0, 1]
Ans:True.
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(b) If is Lipschitz on [0, 1], and f is differentiable, then f ′ is bounded on [0, 1].
Ans: False, a counter example is x sin 1

x .

(c) The function f(x) = x2 is uniformly Lipschitz on [0, 1].
Ans: True.

(d) There exists no integrable functions f on [−π, π] so that

f ∼
∞∑
n=1

sinnx.

True, by Riemann Lebesgue Lemma.

(e) There exists no integrable functions f on [−π, π] so that

f ∼
∞∑
n=1

1√
n

cosnx.

Ans:True, by Parseval identity.

(f) Let fn → f on [0, 1] in L2 sense, then fn(x)→ f(x) for some x ∈ [0, 1].
Ans: False, we will discuss it in the tutorial.

(g) If
∑∞
n=−∞ cne

inx converges uniformly (i.e. the partial sum sN =
∑N
n=−N

converges uniformly), then
∑∞
n=−∞ |cn|2 <∞.

Ans: True.

(h) If
∑∞
n=−∞ |cn|2 <∞, then

∑∞
n=−∞ cne

inx converges uniformly.
False, if cn = 1/n, then the series diverges for x = 0.

(i) Let cn = cn(f) for some function f integrable on [−π, π], then
∑∞
n=−∞ cne

inx

converges for almost all x ∈ [−π, π].
This is true for Riemann integrable functions (but the proof is hard), but
incorrect for Lebesgue integrable functions, just forget about this question.

(j) Let f be a 2π periodic continuous, suppose cn(f) = 0 for all n. Then f is
the zero function.
Ans: True, using Weierstrass approximation theorem.

Question: Let 0 < δ < π, and define the 2π periodic function f by

f(x) =

{
1, if |x| ≤ δ
0, if δ < |x| ≤ |π|

(a) Compute the Fourier coefficients of f .
Ans:a0 = δ/π, an = 2 sinnδ/nπ, bn = 0.
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(b) Show that
∞∑
n=1

sinnδ

n
=
π − δ

2
.

Ans: Evaluate at 0.

(c) Show that
∞∑
n=1

sin2 nδ

n2δ
=
π − δ

2
.

Ans: Use Parseval’s identity. (You can check both sides agree when δ →
0.)

(d) Show that ∫ ∞
0

(
sinx

x

)2

dx =
π

2

Ans: Using definition of Riemann sum.

3 Questions for this tutorial

1. True or false

(a) If f is integrable on [0, 1], then f2 is integrable on [0, 1].

(b) If f2 is integrable on [0, 1], then f is integrable on [0, 1].

(c) If f2 is integrable on [0, 1], then |f | is integrable on [0, 1].

(d) If f is non-negative and continuous on (0, 1], and
∫ 1

0
f exists as an

improper integral, then
∫ 1

0
f2 exists as an improper integral.

(e) If f is non-negative and continuous on (0, 1], and
∫ 1

0
f2 exists as an

improper integral, then
∫ 1

0
f exists as an improper integral.

2. Let f be a function on (−π, π], which is integrable on [a, π] for any
a ∈ (−π, π], and that limc→−π

∫ π
c
f exists, show that Riemann Lebesgue

lemma holds.

3. If f is uniformly Lipschitz and 2π periodic, show that cn(f) = O(1/n).

4. Show that

− log |2 sin
x

2
| ∼

∞∑
n=1

cosx

n

Hints:
∫ π
0

log sin x
2 = −π2 log 2.
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